Single molecule observation of liposome-bilayer fusion thermally induced by soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs).
نویسندگان
چکیده
A single molecule fluorescence assay is presented for studying the mechanism of soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs)-mediated liposome fusion to supported lipid bilayers. The three neuronal SNAREs syntaxin-1A, synaptobrevin-II (VAMP), and SNAP-25A were expressed separately, and various dye-labeled combinations of the SNAREs were tested for their ability to dock liposomes and induce fusion. Syntaxin and synaptobrevin in opposing membranes were both necessary and sufficient to dock liposomes to supported bilayers and to induce thermally activated fusion. As little as one SNARE interaction was sufficient for liposome docking. Fusion of docked liposomes with the supported bilayer was monitored by the dequenching of soluble fluorophores entrapped within the liposomes. Fusion was stimulated by illumination with laser light, and the fusion probability was enhanced by raising the ambient temperature from 22 to 37 degrees C, suggesting a thermally activated process. Surprisingly, SNAP-25 had little effect on docking efficiency or the probability of thermally induced fusion. Interprotein fluorescence resonance energy transfer experiments suggest the presence of other conformational states of the syntaxin*synaptobrevin interaction in addition to those observed in the crystal structure of the SNARE complex. Furthermore, although SNARE complexes involved in liposome docking preferentially assemble into a parallel configuration, both parallel and antiparallel configurations were observed.
منابع مشابه
Multiple intermediates in SNARE-induced membrane fusion.
Membrane fusion in eukaryotic cells is thought to be mediated by a highly conserved family of proteins called SNAREs (soluble N-ethyl maleimide sensitive-factor attachment protein receptors). The vesicle-associated v-SNARE engages with its partner t-SNAREs on the target membrane to form a coiled coil that bridges two membranes and facilitates fusion. As demonstrated by recent findings on the he...
متن کاملGeneration of nonidentical compartments in vesicular transport systems
How can organelles communicate by bidirectional vesicle transport and yet maintain different protein compositions? We show by mathematical modeling that a minimal system, in which the basic variables are cytosolic coats for vesicle budding and membrane-bound soluble N-ethyl-maleimide-sensitive factor attachment protein receptors (SNAREs) for vesicle fusion, is sufficient to generate stable, non...
متن کاملDocking of liposomes to planar surfaces mediated by trans-SNARE complexes.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play a key role in membrane fusion in the secretory pathway. In vitro, SNAREs spontaneously assemble into helical SNARE complexes with the transmembrane domains at the C-terminal end. During fusion, SNAREs are thought to bridge the two membranes and assemble in a zipper-like fashion, pulling the membranes together a...
متن کاملCapture and release of partially zipped trans-SNARE complexes on intact organelles
Soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptors (SNAREs) are hypothesized to trigger membrane fusion by complexing in trans through their membrane-distal N termini and zippering toward their membrane-embedded C termini, which in turn drives the two membranes together. In this study, we use a set of truncated SNAREs to trap kinetically stable, partially zipped tra...
متن کاملDeterminants of liposome fusion mediated by synaptic SNARE proteins.
Synaptic exocytosis requires the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin 1, SNAP-25, and synaptobrevin (VAMP). Assembly of the SNAREs into a stable core complex is supposed to catalyze membrane fusion, and proteoliposomes reconstituted with synaptic SNARE proteins spontaneously fuse with each other. We now show that liposome fusion mediate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 87 5 شماره
صفحات -
تاریخ انتشار 2004